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ABSTRACT

Corners are very useful features for such purposes as
image matching or shape analysis, but corner detection is a
relatively expencive operzc:cion. This paper uses filtered x
and y projections, applied to an image containing an object
that has not been explicitly segmented from its background,
to determine possible positions of corners, so that corner
detection can e applied only in the vicinity of these posi-
tions. Even in cases where the object would be hard to seg-
ment (unimodal histogram), this approach yields a good set
of possible corner positions.
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1. Introduction

Corner points in an'image; at which the gradient magnitude
and the rate of change of gradient direction are both high, are
useful features for image matching, because they yield sharp
matches. The corners of objects that have been extracted from
an image are also very useful in shape analysis, e.g., as ver-
tex positions in polygonal approximation. However, corner
points in an image are relatively expensive to detect [1,2],
since they require computing higher-order difference operators
in every position. Corner detection is much less expensive
after an object has been extracted from the image; but it may
be difficult to extract the object cleanly in order to detect
its corners if the image is noisy, e.g., if it has a unimodal
histogram.

This paper describes a method of using the x and y projections
of an image to detect possible positions in the image where cor-
ners may be present. Corners of significant size should give rise
to slope discontinuities in the projections, and a filtering process
(such as those used in image reconstruction) can be used to pro-
duce peaks at these discontinuities. It should be possible to
detect discontinuities due to corners even if the image is noisy,
since the projection process involves avergigifig, Whichvieadﬁgg
the effects of noise. l '“:*,L;TZ.

(1

‘2ach peak on the filtered x(y) pro;ection lndxcates 3 cqluMn

e

(row) of the image in which a corner may bé present, so that,
L3

the intersections of these rows and columng define ﬁosslble gctner
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points. Thus corner detection need be applied only in the
vicinity of these points, which are only a small fraction of
the points in the image. To further reduce the computational
cost, the neighborhoods of the candidate points can be checked
for nonuniformity of gray level before the corner detection
process is applied to them. Candidate points can also be eli-
minated by a nonmaximum suppression process.

Section 2 of this paper describes the method and presents

results for some images of airplanes and an image of a tank.
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2. Method

2.1 Projection, filtering, and peak selection

Given an image f(x,y), its x and y projections are defined
respectively by

p(x) = Zf(x,y) and ply) = Zf(x,y)
Yy X

If we regard the image as the sum of an ideal image plus zero-
mean random noise, the projection process reduces the varia-
bility of this noise (relative to the signal level in the pro-
jection). This may be stated more precisely as follows:

Let p(x) = % £(x,y) and p(y) = L f(x,y) where ny is the num-
n n

Y X
ber of rows and n, the number of columns. If we regard the
irage as the sum of an ideal image f(x,y) plus zero mean random

noise z(x,y), then this may be rewritten as

P, = I (f(x,y) + z(x,y))
Ry

Py = (£(x,y) + z(x,y))
nx

In order to compare Py and py with the pixel gray level, we nor-

malize p, and Py*
- 1 1 1
X ny b 4 nytzly nyny
— 1 1 1
P, = =P, = =L f(x,y) + = z(x,y)
y ng2y nong n.n,

Suppose z(x,y) is a random variable with zero mean and variance

02. Then the second term can be regarded as a sample of a

random variable with zero mean and variance 02/ny (cz/nx).
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Therefore, the projection process reduces the variability of

this noise [3].
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Straight edges in the image do not give rise to discon-

) -‘"J‘

2y
L

tinuities in the projections unless they are nearly parallel

i
'

to one of the axes. Corners in the image, on the other hand,

;3‘ do give rise to slope discontinuities. Thus corners are
generally associated with slope changes in the projections,
ﬁJ and can also produce discontinuities if one side of the corner
. lies along an axis. These phenomena are illustrated in
Figure 1.
ﬁﬁ To enhance these (slope) discontinuities and convert thum
; into peaks, we can apply a convolution operation to the pro-
jections which acts like a second-difference operator, thus
oy converting slope changes into changes of magnitude. A simple
‘ example of such an operation is the one-dimensional digital
Laplacian, in which the convolution kernel has value 1 at the
origin and value % at :t1. Another example is the Shepp-Logan
B filter (4], in which the kernel has value approximately 0.2
;3 at 1. Note that the Laplacian output is 0 when we convolve
‘ it with a linear ramp, whereas the Shepp-Logan filter yields
T; nonzero output (we use a truncated form of this filter).

Figure 2 shows a 74x128 airplane image to which Gaussian
noise has been added with signal:noise ratio=5:1*. The hicto-

.24 grams of the image is also shown; note that it is quite unimodal.

b3e *s:n 18 defined here as tihe ratio between the square of the edge
; contrast and the variance of the noise; see {5].
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Figure 3 shows the x and y projections of the image, and Figure 4
shows the results of filtering the projections of the image

by convolution with the Shepp~Logan and Laplacian filters,
respectively (a constant has been added to the Laplacian values).
Laplacian filtering was used in our experiments, since the
Shepp-Logan filter preserves the original values to a great
extent, rather than simply responding to changes.

Any peak (=local maximum) on the filtered projection could
indicate the presence of a corner in the image, but in order to
eliminate peaks due to noise, we use only peaks whose heights
are in the top 30% to 50%. The more noisy the image, the

smaller the percentage of the peaks that should be accepted.




.................

- 2.2 Corner selection

( Each peak in the x(y) projection indicates the possible pre-
; sence of a corner in that column (row) of the image. Thus if
we have m(n) peaks on the x(y) projection, we have mn positions
of possible corners in the image, i.e., the positions where the
m columns intersect the n rows, as illustrated in Figure 5.

For the airplane image, this yields 150 positions, as seen in
‘1 Figure 6. Note that in Figure 5 the four corners in the image
agive rise to four peaks on each projection, and these in turn
= yield sixteen possible corner positions., Similarly in Figure 6
% we have a grid of possible positions for the corners. Thus we
have to eliminate most of the possible positions by checking
tnem for the presence of actual corners.

A simple method of eliminating positions at which corners
are not present is to test for uniformity of gray level. We
use a 3x3 window centered at the given position; if the gray
level range r in this window is less than a specified fraction
of the average gray level g in the window, we call the window
uniform. To reduce the effects of noise on the measurement of

the gray level range, we can define the range r as the difference

(T I
PRSP

At

between (e.g.) the averages of the three highest and three lowest

gray levels in the window, Figure 7 shows the

93max~93min"*
results of eliminating positions for which r<pg, where p=.8,.7,
and .6. The results are shown superimposed on tine non-noisy

airplane image. For this image, p=.7 seems to be the best choice.
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When we use p=.7, the number of candidate corner points is
reduced to 62; and as Figure 7 shows, these points include
many of the major corners on the airplane. Table 1 shows, for
each candidate point, its x and y coordinates, its gradient
magnitude (G), its rate of change of gradient direction ("turn",
T), and the product C=GT, while measures "corner merit".

Figure 8 shows a histogram of the values of C using p=.7.

As might be expected, this histogram has a peak at low values
of C, and if we threshold C to eliminate this peak, we obtain
a selected set of corner points which still includes most of
the airplane corners. Figure 9 shows the results of applying
various thresholds to C; note that these thresholds eliminate
most of the candidate points, including nearly all the can-
didates that lie in the background.

Another way to eliminate extraneous corner points is bv
nonmaximum suppression. Figure 10 shows the results of suppressing
nonmaxima of C, using a 7x7 neighborhood (i.e., a point is
suppressed if there is a point within checkerboard distance 3
with a hicher value of C), after thresholding at the three levels.
Figure 11 shows the results of nonmaximum suppression after
thresholding at 500, using 7x7, 11x1ll, and 15x15 neighborhoods,
corresponding to checkerboard distances 3, 5, and 7. Another
possibility is to suppress low values rowwise or columnwise,
rather than in a small neighborhood - e.g., to discard the lowest

value of C in each row (see starred entries in Table 1). Figure 12




shows the results of doing this (without thresholding) and

then suppressing nonmaxima in a 3x3, 7x7, or 1l1lx1ll neighborhood.

All these methods of picking good corner points give us
a mixture of actual airplane corners and noise corners. 1In a
noisy image, it is not possible to extract the correct set of
corners by local processing alone, even with the aid of projec-
tions, since the noise often weakens real corners while pro-
ducing strong false corners. However, our results have a good
intersection with the set of correct corners, and if we know what
shape we are looking for, we can use point pattern matching
techniques [6,7] to determine that a subset of the correct cor-
ners is present.

Figure 13 shows another airplane example: (a) airport
scene; (b) airplane window and its projections; (c) possible
corner positions and result of selecting nonuniform positions;
(d) histogram of corner merit values for candidate points;
(e) results of thresholding and of nonmaximum suppression;
(f) results of nonmaximum suppression without thresholding. As
in the first airplane example, good sets of corner points are
obtained using these techniques. Figure 14 shows that similar
results can be obtained without using projections, by applying
the nonuniformity test at every point of the image and threshold-
ing or nonmaximum-suppressing the corner merits; but this is
considerably more expensive (see Section 3); corner merit must be
computed at the hundreds of points that satisfy the nonuniformity

criterion.
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Figure 15 shows another example using a noisy infrared
image of a tank. Here the nonuniformity :riterion (p) is
smaller because the image has lowe~- contrast. Our methods
yield less than 20 corners, most of which lie on the border

of the tank.
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3. Computational cost and concluding remarks

Our method compares quite favorably in computational cost
with performing corner detection at every pixel. If a is
the fraction of rows and columns for which peaks are detected
on the projections, then the fraction of pixels that are can-
didate corner points is az; e.g.,, a=25% implies that only about
6% of the pixels are candidates. Moreover, the uniformity
test, which tends to eliminate a majority of the candidates, is
much cheaper than the corner detection operator; the latter
involves over 50 multiplications, and a similar number of addi-
tions, for each pixel. The overhead of computing and filtering
the projections is not large; computing them costs about 2 acddi-
tions per pixel, and filtering costs on the order of the syuare
root of the number of pixels.

We have seen that corner detection in a noisy image is not
a very reliable process. Using projections, however, in which
the averaging helps to combat the effects of the noise, we can
eliminate most of the non-corner points without losing more
than a fraction of thé corner points. We can further reduce
the set of candidate points by applying simple tests for gray
level nonuniformity. When we apply corner detection to the
remaining candidates, and use thresholding, nonmaximum suppression,
or both, we obtain a set of corners comparable to the set that

- could be obtained by applying corner detection in the image, and

at much lower computational cost.
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32 10 302 6.7 2023

37 10 -44 18. 8 827 =»
10 13 -58 12. 1 701 =
37 13 206 7.9 1627

10 27 36 14. 9 834 »
37 27 -250 4.3 1075

a7 29 -326 2.3 749

34 35 21 12. 9 270

37 35 -22 8 6 189 *
a2 42 124 17.8 2207

34 42 28 4.9 137 »
37 42 -28 12. 6 352

32 49 ~1072 1.2 1286

34 49 -93 7.8 764

37 49 -108 2.0 216 »
42 49 4 -207 3.8 786

51 49 . =198 2.3 455

22 &0 -77 14. 2 1093

32 &0 -109 15. 3 1467

34 &0 =360 1.4 S04
37 60 -120 6.9 828

42 &0 -242 5.0 1210

51 &0 40 18. 5 740

17 66 38 17. 9 665

22 Y- S50 11.0 550

32 b6 -21 4.3 - 90 »
34 &6 -296 3.7 1099

37 &6 -318 6.3 2003

42 Y-} -92 8. 4 772

51 Y- 146 4.9 715
Table 1. Corner merits for the candidate corner points shown

in Figure 7 (middle:

p=.7). X,Y are the coordinates

of the.point, T is the rate of change of gradient
direction, G is the gradient magnitude, and C=GT.




10. 9 1765
14. 2 497
5.8 127
6.1 1523
8. 6 2029
6.9 441
9.3 176
11.1 1163
9.9 2099
19.2 710
8.5 204
2.1 6295
6.9 469
9.9 316
11.0 781
10. 2 469
.2 530
8.9 1148
20. 5 2685
13.1 484
4.9 22
.6 1456
7.1 504
3.3 1729
12.5 362
6.8 2046
8. 4 2276
13.7 685
4.6 404
3.9 2046
12.3 848
16. 2 761

Table 1, cont'd.
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Figure 1. Simple examples of rrojections; the
object has nonzero gray level, the background
has level zero.




Figure 1, cont'd.
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Figure 2.
histogram.

Noisy airplane image and its

the

image.
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(b)

Figure 4. Result of filtering the projections using

(a) the truncated Shepp-Logan filter,
dimensional digital Laplacian.

(b) the one-
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Figure 5. If there are m(n) direction changes on
the projections, there are mn possible corner posi-
tions in tne image. In this simple illustration,
m=n=4.

0\

Figure 6. Possible corner positions (165) for the air-
plane image.
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Figure 7. Candidate corner points at which r=pg
p=.8 (left), .7 (center), and .6 (right), shown
superimposed on the original image.

250 5ec 750 icet 1250 (Scc (18 20cc izSo 25l 278

Figure 8. Histogram of corner merits (C=GT) for
tlie candidate points using p=.7.
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Figure 9. Results of thresholding C at 500
(left), 750 (middle), and 1000 (right) when we
used p=.7.
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Figure 10. Results of nonmaximum suppression, using
# a 7x7 neighborhood, applied to Figure 9.
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Figure 11. Results of nonmaximum suppression after
thresholding at 500, using neighborhoods of 7x7 (left),
11x1l (middle), and. 15x15 (right),

Figure 12. Results of nonmaximum suppression after
eliminating the weakest corner in each row and column
(starred entries in Table 1), using neighborhoods of
3x3 (left), 7x7 (middle), and 11x11l (right).
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Figure 13. Another example.
] (a) Airport scene; (b) window containing airplane,
-® and its x and y projections.
o
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(c)
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25¢ 500 750 jece [250

(d)

Figure 13, cont'd. (c) Candidate corner

points, and
results of applying nonuniformity test r=pd for p=
.8,.7, and .6. -
(d)

Histogram of co.ner merit values for p=.5.
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Figure 13, cont'd: (e) Left column: airplane window

and candidate points using p=.6 (same as rightmost out-
put in Figure 13c). Bottom row (cols. 2-4): results of
thresholding the corner merit values at 250, 50 nd 50,
Top row: col. 2 same as bottom row; cols. 3-4, results of
nonmaximum suppression using 5x5 and 7x7 neighborhoods.

(f) Left column: candidate points using p=.6 (bottom) and

.7(top) (same as two rightmost outputs in Figure 13c). Re-
maining columns: results of nonmaximum suppression using

3x3, 5x5, and 7x7 neighborhoods.
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Figure 14. Results of applying the nonuniformity
test at every point of the image Top row: Points
for which r=.7g (left); results of thresholding C
at 250,500, and 700. Bottom row: Results of non-
maximum suppression without thresholding. Middle
row: Results of thresholding at 500 and nonmaximum
suppression using 3x3, 5x5, and 7x7 neighborhoods.

Figure 15(a): Infrared image of a tank and its
x and y projections, as well as its histogram.




(c)

Figure 15(cont'd): (b) Top row: Points for which

rzpg for p=.30,_ .28, and .25. Bottom row: Points

for which r>.28g, and results of nonmaximum suppression
using 5x5 and 7x7 neighborhoods. (c) Top row: Results
of thresholding the corner merit, for points at which
r>.28g, at 200,150, and 100. Bottom row: After
thresholding at 100, results of nonmaximum suppression
ising 3x3, 5x5, and 7x7 neighborhoods.
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